Part Number Hot Search : 
TS79M09 AD7778AS ZL60012 LTC69 LTC69 UPC2260V MMBD1501 4STRL
Product Description
Full Text Search
 

To Download APT50GN120L2DQ2G Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  050-7606 rev b 10-2005 apt50gn120l2dq2(g) typical performance curves maximum ratings all ratings: t c = 25c unless otherwise speci?ed. static electrical characteristics characteristic / test conditionscollector-emitter breakdown voltage (v ge = 0v, i c = 400a) gate threshold voltage (v ce = v ge , i c = 2ma, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 50a, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 50a, t j = 125c) collector cut-off current (v ce = 1200v, v ge = 0v, t j = 25c) 2 collector cut-off current (v ce = 1200v, v ge = 0v, t j = 125c) 2 gate-emitter leakage current (v ge = 20v) intergrated gate resistor symbol v (br)ces v ge(th) v ce(on) i ces i ges r gint units volts ana ? symbol v ces v ge i c1 i c2 i cm ssoa p d t j ,t stg t l apt50gn120l2dq2(g) 1200 30 134 66 150 150a @ 1200v 543 -55 to 150 300 unit volts ampswatts c parametercollector-emitter voltage gate-emitter voltage continuous collector current 8 @ t c = 25c continuous collector current @ t c = 110c pulsed collector current 1 @ t c = 150c switching safe operating area @ t j = 150c total power dissipationoperating and storage junction temperature range max. lead temp. for soldering: 0.063" from case for 10 sec. apt website - http://www.advancedpower.com caution: these devices are sensitive to electrostatic discharge. proper hand ling procedures should be followed. utilizing the latest non-punch through (npt) field stop technology, these igbts have a very short, low amplitude tail current and low eoff. the trench gate design results in superior v ce(on) performance. easy paralleling results from very tight parameter distribution and slightly positive v ce(on) temperature coef?cient. built-in gate resistance ensures ultra-reliable operation. low gate charge simpli?es gate drive design and minimizes losses. ? 1200v npt field stop ? trench gate: low v ce(on) ? easy paralleling ? 10s short circuit capability ? intergrated gate resistor: low emi, high reliability applications : welding, inductive heating, solar inverters, smps, motor drives, ups min typ max 1200 5 5.8 6.5 1.4 1.7 2.1 1.9 200 tbd 600 4 1200v apt50gn120l2dq2 APT50GN120L2DQ2G* *g denotes rohs compliant, pb free terminal finish. ? g c e to-264 max c e g downloaded from: http:///
050-7606 rev b 10-2005 apt50gn120l2dq2(g) dynamic characteristics symbol c ies c oes c res v gep q g q ge q gc ssoa scsoa t d(on) t r t d(off) t f e on1 e on2 e off t d(on) t r t d(off) t f e on1 e on2 e off test conditions capacitance v ge = 0v, v ce = 25v f = 1 mhz gate charge v ge = 15v v ce = 600v i c = 50a t j = 150c, r g = 2.2 ? 7 , v ge = 15v, l = 100h,v ce = 1200v v cc = 960v, v ge = 15v, t j = 125c, r g = 2.2 ? 7 inductive switching (25c) v cc = 800v v ge = 15v i c = 50a r g = 2.2 ? 7 t j = +25c inductive switching (125c) v cc = 800v v ge = 15v i c = 50a r g = 2.2 ? 7 t j = +125c characteristicinput capacitance output capacitance reverse transfer capacitance gate-to-emitter plateau voltage total gate charge 3 gate-emitter charge gate-collector ("miller ") charge switching safe operating area short circuit safe operating area turn-on delay time current rise time turn-off delay time current fall time turn-on switching energy 4 turn-on switching energy (diode) 5 turn-off switching energy 6 turn-on delay timecurrent rise time turn-off delay time current fall time turn-on switching energy 4 4 turn-on switching energy (diode) 5 5 turn-off switching energy 6 6 min typ max 3600 210 170 9.5 315 20 190 150 10 28 27 320 115 tbd 3900 4495 28 27 395 205 tbd 5660 6795 unit pf v nc a s ns j ns j unit c/w gm min typ max .23 .61 5.9 characteristicjunction to case (igbt) junction to case (diode) package weight symbol r jc r jc w t thermal and mechanical characteristics 1 repetitive rating: pulse width limited by maximum junction temperature. 2 for combi devices, i ces includes both igbt and fred leakages 3 see mil-std-750 method 3471. 4 e on1 is the clam ped inductive turn-on-energy of the igbt only, without the effect of a commutating diod e reverse recovery current adding to the igbt turn-on loss. (see figure 24.) 5 e on2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the igbt turn-on switching loss. (see figures 21, 22.) 6 e off is the clamped inductive turn-off energy measured in accordance with jedec standard jesd24-1. (see figures 21, 23.) 7 r g is external gate resistance, not including r gint nor gate driver impedance. 8 continuous current limited by package lead temperature. apt reserves the right to change, without notice, the speci?cations and information contained herein . downloaded from: http:///
050-7606 rev b 10-2005 apt50gn120l2dq2(g) typical performance curves bv ces , collector-to-emitter breakdown v ce , collector-to-emitter voltage (v) i c , collector current (a) i c , collector current (a) voltage (normalized) i c, dc collector current(a) v ce , collector-to-emitter voltage (v) v ge , gate-to-emitter voltage (v) i c , collector current (a) i c = 50a t j = 25c 250s pulse test<0.5 % duty cycle 160140 120 100 8060 40 20 0 160140 120 100 8060 40 20 04 3.5 3 2.5 2 1.51.0 0.5 0 1.101.05 1.00 0.95 0.90 v ce = 600v v ce = 240v v ce = 960v v ce , collecter-to-emitter voltage (v) v ce , collecter-to-emitter voltage (v) figure 1, output characteristics(t j = 25c) figure 2, output characteristics (t j = 125c) v ge , gate-to-emitter voltage (v) gate charge (nc) figure 3, transfer characteristics figure 4, gate charge v ge , gate-to-emitter voltage (v) t j , junction temperature (c) figure 5, on state voltage vs gate-to- emitter voltage figure 6, on state voltage vs junction tem perature t j , junction temperature (c) t c , case temperature (c) figure 7, breakdown voltage vs. junction temperature figure 8, dc collector current vs case temper ature 15v 11v 9v 8v 12v 10v 7v 15v 11v 10v 9v 12v 8v 7v t j = 125c t j = 25c t j = -55c t j = 25c. 250s pulse test <0.5 % duty cycle i c = 100a i c = 50a i c = 25a v ge = 15v. 250s pulse test <0.5 % duty cycle i c = 100a i c = 50a i c = 25a 0 2 4 6 8 10 12 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 50 100 150 200 250 300 350 8 10 12 14 16 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 150 160140 120 100 8060 40 20 0 1614 12 10 86 4 2 0 3 2.5 2 1.5 1 0.5 0 180160 140 120 100 8060 40 20 0 lead temperature limited lead temperature limited downloaded from: http:///
050-7606 rev b 10-2005 apt50gn120l2dq2(g) v ge =15v,t j =25c v ce = 800v r g = 2.2 ? l = 100 h switching energy losses (j) e on2 , turn on energy loss (j) t r, rise time (ns) t d(on) , turn-on delay time (ns) switching energy losses (j) e off , turn off energy loss (j) t f, fall time (ns) t d (off) , turn-off delay time (ns) i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 9, turn-on delay time vs collector current figure 10, turn-off delay time vs collector curre nt i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 11, current rise time vs collector current figure 12, current fall time vs collector curre nt i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 13, turn-on energy loss vs collector current figure 14, turn off energy loss vs collector current r g , gate resistance (ohms) t j , junction temperature (c) figure 15, switching energy losses vs. gate resistance figure 16, switching energy losses vs junc tion temperature v ce = 800v v ge = +15v r g = 2.2 ? r g = 2.2 ? , l = 100 h, v ce = 800v v ce = 800v t j = 25c , t j =125c r g = 2.2 ? l = 100 h 3530 25 20 15 10 50 120100 8060 40 20 0 2500020000 15000 10000 5000 0 5000040000 30000 20000 10000 0 v ge = 15v v ge =15v,t j =125c v ce = 800v v ge = +15v r g = 2.2 ? v ce = 800v v ge = +15v r g = 2.2 ? e on2, 100a e off, 100a e off, 50a e on2, 50a e on2, 25a e off, 25a e on2, 100a e off, 100a e on2, 50a e off, 50a e on2, 25a e off, 25a v ce = 800v v ge = +15v t j = 125c r g = 2.2 ? , l = 100 h, v ce = 800v 500400 300 200 100 0 300250 200 150 100 50 0 1400012000 10000 80006000 4000 2000 0 2200020000 18000 16000 14000 12000 10000 80006000 4000 2000 0 t j = 125c, v ge = 15v t j = 25c, v ge = 15v t j = 25c,v ge = 15v t j = 125c,v ge = 15v 20 30 40 50 60 70 80 90 100 110 20 30 40 50 60 70 80 90 100 110 20 30 40 50 60 70 80 90 100 110 20 30 40 50 60 70 80 90 100 110 20 30 40 50 60 70 80 90 100 110 20 30 40 50 60 70 80 90 100 110 0 10 20 30 40 50 0 25 50 75 100 125 t j = 25 or 125c,v ge = 15v t j = 125c, v ge = 15v t j = 25c, v ge = 15v downloaded from: http:///
050-7606 rev b 10-2005 apt50gn120l2dq2(g) typical performance curves 0.250.20 0.15 0.10 0.05 0 z jc , thermal impedance (c/w) 0.3 0.9 0.7 single pulse rectangular pulse duration (seconds) figure 19a, maximum effective transient thermal impedance, junction-to-case vs pulse duration 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 6,0001,000 500100 160140 120 100 8060 40 20 0 c, capacitance ( p f) i c , collector current (a) v ce , collector-to-emitter voltage (volts) v ce , collector to emitter voltage figure 17, capacitance vs collector-to-emitter voltage figure 18,minimim switching safe operatin g area 0 10 20 30 40 50 0 200 400 600 800 1000 1200 1400 figure 19b, transient thermal impedance model 10 20 30 40 50 60 70 80 90 100 f max , operating frequency (khz) i c , collector current (a) figure 20, operating frequency vs collector current 120 5010 51 c 0es c res 0.5 0.1 0.05 f max = min (f max , f max2 ) 0.05 f max1 = t d(on) + t r + t d(off) + t f p diss - p cond e on2 + e off f max2 = p diss = t j - t c r jc c ies t j = 125 c t c = 75 c d = 50 %v ce = 800v r g = 2.2 ? peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: 0.1150.115 0.0088f0.188f power (watts) rc model junction temp. ( c) case temperature. ( c) downloaded from: http:///
050-7606 rev b 10-2005 apt50gn120l2dq2(g) figure 22, turn-on switching waveforms and de?nitions figure 23, turn-off switching waveforms and de?nitions t j = 125c collector current collectorvoltage gate voltage switching energy 5% 10% t d(on) 90% 10% t r 5% t j = 125c collector current gate voltage switching energy 0 90% t d(off) 10% t f 90% collectorvoltage apt40dq120 i c a d.u.t. v ce figure 21, inductive switching test circuit v cc *driver same type as d.u.t. i c v clamp 100uh v test a a b d.u.t. driver* v ce figure 24, e on1 test circuit downloaded from: http:///
050-7606 rev b 10-2005 apt50gn120l2dq2(g) typical performance curves characteristic / test conditionsmaximum average forward current (t c = 112c, duty cycle = 0.5) rms forward current (square wave, 50% duty)non-repetitive forward surge current (t j = 45c, 8.3ms) symbol i f (av) i f (rms) i fsm symbol v f characteristic / test conditions i f = 50a forward voltage i f = 100a i f = 50a, t j = 125c static electrical characteristics unit amps unit volts min typ max 2.9 3.67 2.36 apt50gp120l2dq2(g) 4063 210 dynamic characteristics maximum ratings all ratings: t c = 25c unless otherwise speci?ed. ultrafast soft recovery anti-parallel diode min typ max - 26 - 350 - 570 - 4 - - 430 - 2200 - 9 - - 210 - 3400 - 29 unit ns nc amps ns nc amps ns nc amps characteristicreverse recovery time reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current symbol t rr t rr q rr i rrm t rr q rr i rrm t rr q rr i rrm test conditions i f = 40a, di f /dt = -200a/ s v r = 800v, t c = 25 c i f = 40a, di f /dt = -200a/ s v r = 800v, t c = 125 c i f = 40a, di f /dt = -1000a/ s v r = 800v, t c = 125 c i f = 1a, di f /dt = -100a/ s, v r = 30v, t j = 25 c figure 25b, transient thermal impedance model z jc , thermal impedance (c/w) 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 rectangular pulse duration (seconds) figure 25a. maximum effective transient thermal impedance, junction-to-case vs. pulse duration 0.700.60 0.50 0.40 0.30 0.20 0.10 0 0.5 single pulse 0.1 0.3 0.7 0.9 0.05 peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: 0.0442 c/w 0.242 c/w 0.324 c/w 0.00222 j/ c 0.00586 j/ c 0.0596 j/ c power (watts) junctiontemp ( c) rc model case temperature ( c) downloaded from: http:///
050-7606 rev b 10-2005 apt50gn120l2dq2(g) t j = 125 c v r = 800v 20a 40a 80a 600500 400 300 200 100 0 3530 25 20 15 10 50 duty cycle = 0.5 t j = 175 c 8070 60 50 40 30 20 10 0 c j , junction capacitance k f , dynamic parameters (pf) (normalized to 1000a/ s) i f(av) (a) t j , junction temperature ( c) case temperature ( c) figure 30. dynamic parameters vs. junction temperature figure 31. maximum average fo rward current vs. casetemperature v r , reverse voltage (v) figure 32. junction capacitance vs. reverse voltage v f , anode-to-cathode voltage (v) -di f /dt, current rate of change(a/ s) figure 26. forward current vs. forward voltage figure 27. reverse recovery time vs. current rate of change -di f /dt, current rate of change (a/ s) -di f /dt, current rate of change (a/ s) figure 28. reverse recovery charge vs. current rate of change figure 29. reverse recovery cu rrent vs. current rate of change q rr , reverse recovery charge i f , forward current (nc) (a) i rrm , reverse recovery current t rr , reverse recovery time (a) (ns) t j = 175 c t j = -55 c t j = 25 c t j = 125 c 0 1 2 3 4 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 t j = 125 c v r = 800v 80a 20a 40a 120100 8060 40 20 0 50004500 4000 3500 3000 2500 2000 1500 1000 500 0 t j = 125 c v r = 800v 80a 40a 20a t rr q rr q rr t rr i rrm 1.21.0 0.8 0.6 0.4 0.2 0.0 200150 100 50 0 0 25 50 75 100 125 150 25 50 75 100 125 150 175 1 10 100 200 downloaded from: http:///
050-7606 rev b 10-2005 apt50gn120l2dq2(g) typical performance curves e1 sac: tin, silver, copper to-264max (l2) package outline 19.51 (.768)20.50 (.807) 19.81 (.780)21.39 (.842) 25.48 (1.003)26.49 (1.043) 2.29 (.090)2.69 (.106) 0.76 (.030)1.30 (.051) 4.60 (.181)5.21 (.205) 1.80 (.071) 2.01 (.079) 2.59 (.102) 3.00 (.118) 0.48 (.019)0.84 (.033) gate dimensions in millimeters and (inches) 2.29 (.090)2.69 (.106) 5.79 (.228)6.20 (.244) 2.79 (.110)3.18 (.125) 5.45 (.215) bsc 2-plcs. collector (cathode) collector(cathode) emitter(anode) 4 3 1 2 5 5 zero 1 2 3 4 di f /dt - rate of diode current change through zero crossing. i f - forward conduction current i rrm - maximum reverse recovery current. t rr - reverse r ecovery time, measured from zero crossing where diode q rr - area under the curve defined by i rrm and t rr . current goes from positive to negative, to the point at which the straight line through i rrm and 0.25 i rrm passes through zero. figure 33. diode test circuit figure 34, diode reverse recovery waveform and definitions 0.25 i rrm pearson 2878 current transformer di f /dt adjust 30 h d.u .t. +18v 0v v r t rr / q rr waveform apt10035lll downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of APT50GN120L2DQ2G

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X